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Abstract

This two-part contribution presents a novel and efficient method to analyze the two-dimensional (2-D) electrome-

chanical fields of a piezoelectric layer bonded to an elastic substrate, which takes into account the fully coupled

electromechanical behavior. In Part I, Hellinger–Reissner variational principle for elasticity is extended to electrome-

chanical problems of the bimaterial, and is utilized to obtain the governing equations for the problems concerned. The

2-D electromechanical field quantities in the piezoelectric layer are expanded in the thickness-coordinate with seven

one-dimensional (1-D) unknown functions. Such an expansion satisfies exactly the mechanical equilibrium equations,

Gauss law, the constitutive equations, two of the three displacement–strain relations as well as one of the two electric

field-electric potential relations. For the substrate the fundamental solutions of a half-plane subjected to a vertical or

horizontal concentrated force on the surface are used. Two differential equations and two singular integro-differential

equations of four unknown functions, the axial force, N , the moment, M , the average and the first moment of electric

displacement, D0 and D1, as well as the associated boundary conditions have been derived rigorously from the sta-

tionary conditions of Hellinger–Reissner variational functional. In contrast to the thin film/substrate theory that

ignores the interfacial normal stress the present one can predict both the interfacial shear and normal stresses, the latter

one is believed to control the delamination initiation.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

A thin piezoelectric layer adhered on the surface of a host material or embedded in it as an actuator and/

or a sensor plays an important role in the application of piezoelectric materials to smart technologies
(Wang and Chen, 2000; Pal et al., 2000; Gong and Suo, 1996; Chandrasekaran et al., 2000; Kim and Jones,

1996). Two fundamental issues concerned in such an integration technology are: (1) the capability of
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converting the electric energy into the mechanical energy, and vice versa; (2) the integrity and durability of

bonded smart devices or components.

The first issue is related directly to the global interaction between the piezoelectric layer and the host

material. Crawley and de Luis (1987) first proposed a model to describe a deformation transfer from a
piezoelectric actuator to a beam-like host material through the adhesive layer. The axial stress in the

piezoceramic actuator was simply assumed to be uniform across its thickness, the adhesive layer was as-

sumed to have a one-dimensional shear strain condition and the axial strain of the host material was as-

sumed to be linear in the thickness direction. In order to avoid bending, the structure has two symmetrical

piezoelectric actuators adhered on the top and bottom sides of the host material. Park et al. (1993) modified

the model of Crawley and de Luis (1987) to the structure with a piezoelectric actuator adhered on only one

side, the strain transfer rule was analyzed in the bending–extension mode and the bending–extension–

distortion mode. Crawley and Anderson (1990) studied the strain transfer model of the same structure
based on Euler–Bernoulli beam theory. In the paper the transverse strains of the host and of the piezo-

electric actuator were both assumed to be a linear function of the thickness coordinate. Robbins and Reddy

(1991) analyzed the strain transfer behavior of the structure by using the finite element method. Molyet

(1999) proposed a two-dimensional (2-D) model based on the finite difference method in analyzing the

beam bonded by piezoceramic pieces on both sides. Peelamedu et al. (1999) investigated the strain transfer

between the actuator and the host material experimentally and numerically. The three-dimensional (3-D)

finite element results were compared with the 2-D finite difference model (Molyet, 1999), the 1-D model

(Park et al., 1993) and the experiments. Zhang et al. (2000, 2001a) proposed several models to deal with the
conditions of plane strain, plane stress and bending in the strain transfer analysis of the beam-like structure

with a piezoceramic layer adhered on one side. However, the mentioned analyses ignore the coupling

between electrical fields and mechanical fields. There are a few papers concerning the coupled electrome-

chanical analysis of piezoelectric actuator and piezoelectric sensor (Anderson and Hagood, 1994; Mitchell

and Reddy, 1995; Chattopadhyay et al., 1999; Zhou et al., 2000). Zhou et al. (2000) investigated the dif-

ference between the coupled model (the two-way coupled model in the paper) and the uncoupled model (the

one-way coupled model in the paper). The numerical results have shown a significant difference between the

two models in some cases. Thus, a coupled piezoelectric–mechanical model would be preferred in order to
deal with all the cases.

The second issue, namely the integrity and durability, is related directly to local stress fields at the sites

where the mechanical and electric concentration presents. The fully coupled electromechanical analyses are

needed. The earliest equations describing the mutual interactions of the piezoelectric and mechanical fields

in piezoelectric materials were given by Tiersten (1969). Sosa and Pak (1990), Sosa (1992a,b) introduced the

equations into the fracture analysis of piezoelectric materials and the electroelastic behavior of piezoelectric

laminated structures. Most investigations to date have focused on the fracture within a single piezoelectric

material (Yang and Suo, 1994; Hao et al., 1996; Zhang and Tong, 1996; Zhang et al., 1998, 2001b). Some
works have been done on an interface crack between two piezoelectric materials (Suo et al., 1992; Shen

et al., 1999; Herrmann et al., 2001) and between a piezoelectric material and an elastic material (Liu and

Hsia, 2003; Wang and Meguid, 2000). Recently the two dimensional electromechanical singularities of

piezoelectric wedges were discussed by Xu and Rajapakse (2000) and Chue and Chen (2002). The asym-

ptotic solutions of them indicated that the stresses, electric displacements and electric fields near the apex

of a wedge are proportional to r�s, where r is the distance measured from the apex of the wedge. The

singularity order, s, could be a complex number, leading to a physically unrealistic oscillating electroelastic

field near the wedge. Most of the mentioned analyses considered an infinite body, which is somewhat not
relevant geometrically to the bonded smart structures where the piezoelectric layer is of finite size and

relatively thin compared with the substrate. This leaves space for one to develop an approach alternative to

the mathematical wedge model, which can take into account the geometric features of the piezoelectric

layer, such as the finite length and the thin thickness. In fact, Wang and Meguid (2000) investigated the
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behavior of a thin piezoelectric actuator attached to an infinite host structure. The uniform electrical field

was assumed in piezoelectric layer. And a thin film/substrate theory was utilized, which ignores the in-

terfacial normal stress.

When a piezoelectric layer is bonded on the surfaces of a substrate, both length and thickness of the layer
are often much smaller than the size of the substrate, the host material could be treated as a half-infinite

plane. In this two-part contribution, we will propose an electromechanical coupling method to analyze such

problems. In this part, we devote our attention to developing the governing equations for the problems. By

taking into account the geometry of the problems, the singular integro-differential equations will be derived

from an extended Hellinger–Reissner variational principle.
2. Coupling problems of a piezoelectric layer bonded to an elastic substrate

Consider a piezoelectric layer of thickness, h, with the poling direction in z-axis bonded to an elastic

substrate that is modeled as a half-infinite plane, Fig. 1. The Cartesian coordinate system x–y–z is used with

the origin positioned at the center of the piezoelectric layer. The plane strain condition of the xz-plane is

assumed. Let V and V ðsÞ represent the volumes of the piezoelectric material and the substrate. The

boundary value problems of the bimaterial can be stated as follows:

(1) The mechanical equilibrium equations without body force are given by
orx

ox
þ orxz

oz
¼ 0; in V þ V ðsÞ; ð1aÞ

orz

oz
þ orxz

ox
¼ 0; in V þ V ðsÞ; ð1bÞ
where rx, rz, rxz are Cauchy stress components.

(2) Gauss law in the absence of free electric charges inside the piezoelectric material gives
oDx

ox
þ oDz

oz
¼ 0; in V þ V ðsÞ; ð2Þ
where Dx and Dz are the electric displacement components.

(3) The strain–displacement relations are
ex ¼
oux
ox

; in V þ V ðsÞ; ð3aÞ

ez ¼
ouz
oz

; in V þ V ðsÞ; ð3bÞ
z

x

2l

h

Elastic substrate

Piezoelectric layer
la ye r

∞ε x
∞ε x

Fig. 1. A piezoelectric layer bonded to a substrate.
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2exz ¼
oux
oz

þ ouz
ox

; in V þ V ðsÞ; ð3cÞ
where ex, ez and exz are the infinitesimal strain components, ux and uz the displacement components.

(4) Under a quasi-static condition the electric field, Ex and Ez as well as the electric potential, /, have the
following relationship:
Ex ¼ � o/
ox

; in V þ V ðsÞ; ð4aÞ

Ez ¼ � o/
oz

; in V þ V ðsÞ: ð4bÞ
(5) The constitutive equations for the linear piezoelectric layer are given by
ex ¼ a11rx þ a13rz þ b31Dz; ð5aÞ

ez ¼ a13rx þ a33rz þ b33Dz; ð5bÞ

2exz ¼ a55rxz þ b15Dx; ð5cÞ

Ex ¼ �b15rxz þ d11Dx; ð6aÞ

Ez ¼ �b31rx � b33rz þ d33Dz; ð6bÞ

where a11, a13, a33 and a55 are the 2-D compliance components reduced from the 3-D compliance tensor

sijkl; b15, b31 and b33 reduced from the third-order piezoelectric tensor gijk; d11 and d33 reduced from the

second-rank dielectric impermeability tensor bij. And the elastic stress–strain relationship of the substrate
gives
eðsÞx ¼ aðsÞ11r
ðsÞ
x þ aðsÞ13r

ðsÞ
z ; ð7aÞ

eðsÞz ¼ aðsÞ13r
ðsÞ
x þ aðsÞ33r

ðsÞ
z ; ð7bÞ

2eðsÞxz ¼ aðsÞ55r
ðsÞ
xz ; ð7cÞ
where quantities with the superscript �s� belong to the substrate and those without superscript belong to the

piezoelectric layer.

(6) If the two materials are perfectly bonded the displacements and mechanical tractions have to be

continuous across the interface, i.e.
uðsÞx x;
h
2

� �
¼ ux x;

h
2

� �
¼ UxðxÞ for jxj6 l; ð8aÞ

uðsÞz x;
h
2

� �
¼ uz x;

h
2

� �
¼ UzðxÞ for jxj6 l; ð8bÞ

rz x;
h
2

� �
¼ rðsÞ

z x;
h
2

� �
for jxj6 l; ð9aÞ

rxz x;
h
2

� �
¼ rðsÞ

xz x;
h
2

� �
for jxj6 l: ð9bÞ



J. Zhang et al. / International Journal of Solids and Structures 40 (2003) 6781–6797 6785
(7) The piezoelectric layer is free of the mechanical loading on the external surfaces, leading to the

mechanical boundary conditions in terms of stress components as follows:
rz x;
�

� h
2

�
¼ 0; ð10aÞ

rxz x;
�

� h
2

�
¼ 0; ð10bÞ

rxð�l; zÞ ¼ 0; ð10cÞ

rxzð�l; zÞ ¼ 0: ð10dÞ
And the free surface of the substrate gives
rðsÞ
z x; z
�

¼ h
2

�
¼ 0; for jxj > l; ð11aÞ

rðsÞ
xz x; z
�

¼ h
2

�
¼ 0; for jxj > l: ð11bÞ
The elastic substrate is mechanically loaded in tension or compression via the remote axial strain, e1x , i.e.
rðsÞ
x ð�1; zÞ ¼ 1

aðsÞ11

e1x ; ð11cÞ

rðsÞ
xz ð�1; zÞ ¼ 0: ð11dÞ
(8) From the viewpoint of the electric boundary conditions the boundary of the piezoelectric layer can be

divided into two parts, on which either the free electric charge or the electric potential is prescribed. Both

the edges of the piezoelectric layer is open to air which has a dielectric constant approximately three times

orders of magnitude smaller than the dielectric constants of the piezoelectric material (Sosa, 1992a). Such

an assumption leads to the electrical boundary conditions given by
Dxð�l; zÞ ¼ 0: ð12Þ
The top and bottom surfaces of the piezoelectric layer are fully covered with the electrodes of a zero

thickness, and the potential on the electrodes does not vary with position, i.e.
/ x;
�

� h
2

�
¼ /t; ð13aÞ

/ x;
h
2

� �
¼ /b; ð13bÞ
where the constant, /bt ¼ /b � /t, is the electric potential difference between the bottom and top electrodes.

The uniform electric potentials are still unspecified, suggesting that a further boundary condition needs to

be given. This can be done by one of two exclusive ways, namely by directly prescribing the voltage, V , or
by giving total free charges on the surfaces, �qq. The former one gives
/bt ¼ V : ð14Þ
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And the latter one leads to the following mathematical expression
Z l

�l
Dz x;

�
� h
2

�
dx ¼

Z l

�l
Dz x;

h
2

� �
dx ¼ �qq: ð15Þ
Eq. (14) is exclusive from Eq. (15), and vice versa. In practice if the piezoelectric layer is used as an actuator
the electric potential difference, /bt, is prescribed by applying a voltage, V , to the electrodes, namely

Eq. (14). If the piezoelectric layer is taken as a sensor that measures the mechanical strain of the substrate

an open circuit may be used without external free charges, i.e., �qq ¼ 0. In this case Eq. (15) should be satisfied

along with �qq ¼ 0, and the potential difference, /bt, can be computed by solving the boundary value problem

governed by Eqs. (1)–(13b) as well as (15), which is an indicator of the mechanical strain of the substrate.

The boundary value problem governed by the equations mentioned can be stated, alternatively, by the

electromechanical variational principle given in Appendix A, which is an extension of Hellinger–Reissner

variational principle for elasticity (Washizu, 1982). In the succeeding sections we will utilize the variational
principle to reduce the 2-D electromechanical problem into an 1-D problem.
3. Expansion of fields in the piezoelectric layer

Assuming the x-axis normal stress has a linear variation across the thickness, it follows that
rx ¼
N
h
þ 12z

h3
M ; ð16Þ
where N and M are the axial force and the bending moment acting on the cross-section and given by,
NðxÞ ¼
Z h=2

�h=2
rxðx; zÞdz; ð17aÞ

MðxÞ ¼
Z h=2

�h=2
zrxðx; zÞdz: ð17bÞ
By combining Eqs. (1a), (1b) and (16) as well as by considering the stress-free surface conditions, Eqs. (10a)

and (10b), one could obtain
rxz ¼
3ðh2 � 4z2ÞM 0

2h3
� ðhþ 2zÞN 0

2h
; ð18aÞ

rz ¼
ðz� hÞðhþ 2zÞ2M 00

2h3
þ ðhþ 2zÞ2N 00

8h
; ð18bÞ
where superscript 0 stands for the derivative with respect to x.
Assumption that the electric displacement component, Dx, is a linear function of z-coordinate leads to
Dxðx; zÞ ¼ D0ðxÞ þ
2z
h
D1ðxÞ; ð19Þ
where D0 and D1 given by
D0ðxÞ ¼
1

h

Z h=2

�h=2
Dxðx; zÞdz; ð20aÞ

D1ðxÞ ¼
6

h2

Z h=2

�h=2
zDxðx; zÞdz; ð20bÞ
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are the through-thickness average and the first moment of the electric displacement in x-direction, res-
pectively. By substituting Eq. (19) into Gauss law, Eq. (2), it follows
Dzðx; zÞ ¼ �zD0
0ðxÞ �

z2

h
D0

1ðxÞ þ D2ðxÞ: ð21Þ
Substitution of the stresses, Eqs. (16) and (18b), as well as the electric displacements, Eq. (21), into Eq. (6b),

along with combination of Eqs. (4b) and (13a,13b), gives
/ ¼ /b þ /t

2
þ ð/b � /tÞ

z
h
� ðh2 � 4z2Þd33

8
D0

0 �
zðh2 � 4z2Þd33

12h
D0

1 �
3b31ðh2 � 4z2Þ

2h3
M

� ðh2 � 4z2Þð3hþ 2zÞb33
48h

N 00 þ ðh2 � 4z2Þð5h2 � 4z2Þb33
32h3

M 00; ð22Þ

D2 ¼ �/b � /t

hd33
þ hD0

1

12
þ b31
hd33

N þ hb33N 00

6d33
� b33M 00

2d33
: ð23Þ
Substitution of Eq. (23) into Eq. (21) leads to
Dzðx; zÞ ¼ �/b � /t

hd33
� zD0

0 þ
h
12

�
� z2

h

�
D0

1 þ
b31
hd33

N þ hb33N 00

6d33
� b33M 00

2d33
: ð24Þ
By substituting the stresses, Eqs. (16) and (18b), as well as the electric displacements, Eq. (21), into Eq. (5b),

then using Eq. (3b) one could derive an expression for the z-axis displacement as follows:
uz ¼ Uz þ
b33ðh� 2zÞ

2hd33
ð/b � /tÞ þ

ðh2 � 4z2Þb33
8

D0
0 þ

zðh2 � 4z2Þb33
12h

D0
1

� ðb31b33 þ a13d33Þðh� 2zÞ
2hd33

N � 3a13ðh2 � 4z2Þ
2h3

M

�
ðh� 2zÞ 4b233h

2 þ a33d33ð7h2 þ 8hzþ 4z2Þ
� �

48hd33
N 00

þ
ðh� 2zÞ 8b233h

3 þ a33d33ð13h3 þ 10h2z� 4hz2 � 8z3Þ
� �

32h3d33
M 00 ð25Þ
where UzðxÞ is the z-axis displacement of the bottom surface of the piezoelectric layer. Similarly, an ap-

propriate combination of the stress, Eq. (18a), the electric displacement, Eq. (19), as well as Eqs. (5c), (3c)

and (25), leads to
ux ¼ Ux þ
h
2

�
� z

�
U 0

z �
b15ðh� 2zÞ

2
D0 � b15

h
4

�
� z2

h

�
D1 þ

ðh� 2zÞ2ðhþ zÞb33
24

D00
0

þ ðh2 � 4z2Þ2b33
192h

D00
1 �

b31b33ðh� 2zÞ þ ða13 � 3a55Þd33h� 2ða13 þ a55Þd33zð Þðh� 2zÞ
8hd33

N 0

� ða13 þ a55Þðh� 2zÞ2ðhþ zÞ
2h3

M 0 �
ðh� 2zÞ2 8b233h

2 þ a33d33ð17h2 þ 12hzþ 4z2Þ
� �

384hd33
N 000

þ
ðh� 2zÞ2 10b233h

3 þ a33d33ð18h3 þ 7h2z� 4hz2 � 4z3Þ
� �

160h3d33
M 000 ð26Þ
where UxðxÞ is the interface displacement in x-direction. In conclusion, the 2-D fields of stresses, dis-
placements, electric displacements and electric potentials in the piezoelectric layer have been expressed in

terms of seven unknown quantities, N ,M , Ux, Uz, D0, D1 and /bt. The last one is a constant while the others
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are functions of x-coordinate only. Such an expansion of the mechanical and electric fields satisfies the

mechanical equilibrium equations (1a) and (1b), Gauss law, Eq. (2), the displacement–strain relations,

Eqs. (3b) and (3c), the potential-electric field relation, Eq. (4b), as well as the constitutive equations. The

remaining two field equations (3a) and (4a) will be replaced by the stationary conditions of Hellinger–
Reissner variational functional given in Appendix A, along with substitution of the expanded fields.
4. Mechanical fields of the substrate

In order to express the mechanical fields of the substrate in terms of the interface displacements, Ux and
Uz, the exact solutions of the half-plane subjected to a concentrated force on the surface are utilized. A

horizontal concentrated force of unit magnitude at the point, n, on the surface will produce a relative x-axis
displacement of point, x, with respect to point x0, on the surface, given by
Gxðx; nÞ ¼
2ð1� mðsÞ

2Þ
pY ðsÞ ln

x0 � n
x� n

����
����; ð27Þ
and the vanishing relative vertical displacement. Y ðsÞ and mðsÞ are Young�s modulus and Poisson�s ratio of the

substrate, respectively. When the surface of the half plane is subjected to a vertical concentrated force of

unit magnitude at the point, n, the relative vertical displacement of point, x, with respect to point x0, on the

surface could be expressed as:
Gzðx; nÞ ¼
2ð1� mðsÞ

2Þ
pY ðsÞ ln

x0 � n
x� n

����
����; ð28Þ
and the relative x-axis displacement is zero. Equations (27) and (28) valid for the plane strain problem can

apply to the plane stress case by replacing Y ðsÞ=ð1� mðsÞ
2Þ with Y ðsÞ.

Assume that the surface tractions over the portion ð�l; lÞ are denoted by pzðxÞ and pxðxÞ, it follows:
px ¼ �rðsÞ
xz x;

h
2

� �
; ð29aÞ

pz ¼ �rðsÞ
z x;

h
2

� �
: ð29bÞ
To produce the interface displacements, Ux and Uz, which are the relative displacements of point, x, with
respect to the point x0, the tractions on the surface of the half-plane, pzðxÞ and pxðxÞ, as well as the remote

strain have to satisfy, i.e.
Ux ¼ ðx� x0Þe1x þ 2ð1� mðsÞ
2Þ

pY ðsÞ

Z l

�l
pxðnÞ ln

x0 � n
x� n

����
����dn; ð30Þ

Uz ¼
2ð1� mðsÞ

2Þ
pY ðsÞ

Z l

�l
pzðnÞ ln

x0 � n
x� n

����
����dn: ð31Þ
5. Governing equations

Now all electric quantities in the piezoelectric layer and the mechanical fields in both the piezoelectric
material and the substrate have been expressed in terms of the 1-D unknown functions, N ,M , Ux, Uz, D0, D1
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and /bt. The governing equations for them could be obtained by substituting the expanded electrome-

chanical fields into the extended Hellinger–Reissner functional, PR, given in Appendix A, and by making

use of the stationary conditions. Since the solutions for stresses and displacements in the half-plane pro-

duced by interface displacements, Ux and Uz, are exact the variation of the extended Hellinger–Reissner
functional associated with the substrate is absolutely zero. Therefore, the extended Hellinger–Reissner

functional, Eq. (A.12), along with the substitution of the electromechanical fields given by Eqs. (16),(18a),

(18b), (19), (24)–(26), (29a)–(31) leads to
dPR ¼ dPV þ dPSM þ dPSE; ð32Þ
in which three terms are associated with the contributions, respectively, of volume, mechanical boundaries

and electric boundaries of the piezoelectric material, i.e.
dPV ¼
Z
V

oux
ox

�
� ða11rx þ a13rz þ b31DzÞ

�
1

h
dN

�
þ 12z

h3
dM

�
dV

�
Z
V

ð
�

� b15rxz þ d11DxÞ þ
o/
ox

�
1

h
dD0

�
þ 12z

h3
dD1

�
dV ; ð33Þ

dPSM ¼ �
Z l

�l
rz x;

h
2

� ��
þ pzðxÞ

�
dUzdx�

Z l

�l
rxz x;

h
2

� ��
þ pxðxÞ

�
dUxdx

þ
Z h=2

�h=2
rxðl; zÞduxðl; zÞdzþ

Z h=2

�h=2
rxzðl; zÞduzðl; zÞdz�

Z h=2

�h=2
rxð�l; zÞduxð�l; zÞdz

�
Z h=2

�h=2
rxzð�l; zÞduzð�l; zÞdz; ð34Þ

dPSE ¼ ð/bt � V Þ
Z l

�l
dDz x;

h
2

� �
dx�

Z h=2

�h=2
Dxðl; zÞd/ðl; zÞdzþ

Z h=2

�h=2
Dxð�l; zÞd/ð�l; zÞdz ð35aÞ
or
dPSE ¼ �
Z l

�l
Dz x;

h
2

� �
dx

�
� �qq

�
d/bt �

Z h=2

�h=2
Dxðl; zÞd/ðl; zÞdzþ

Z h=2

�h=2
Dxð�l; zÞd/ð�l; zÞdz: ð35bÞ
Eqs. (35a) and (35b) are exclusive, representing the boundary conditions, respectively, given by prescribing

the electric potential and the total free charge on both the top and bottom surfaces. The independent

quantities subject to variation in the functional (32)–(35) are seven quantities, N , M , Ux, Uz, D0, D1 and /bt.

The explicit expressions for the first variation of the functional, Eqs. (33)–(35b), are given in Appendix B.

The stationary condition dPR ¼ 0 along with Eqs. (32)–(34) gives
Z h=2

�h=2

oux
ox

�
� ða11rx þ a13rz þ b31DzÞ

�
dz ¼ 0 ð36Þ

Z h=2

�h=2

oux
ox

�
� ða11rx þ a13rz þ b31DzÞ

�
zdz ¼ 0; ð37Þ

Z h=2

�h=2
ð

�
� b15rxz þ d11DxÞ þ

o/
ox

�
dz ¼ 0; ð38Þ



6790 J. Zhang et al. / International Journal of Solids and Structures 40 (2003) 6781–6797
Z h=2

�h=2
ð

�
� b15rxz þ d11DxÞ þ

o/
ox

�
zdz ¼ 0: ð39Þ

px ¼ N 0; ð40Þ

pz ¼ M 00 � h
2
N 00: ð41Þ
Substitution of the expanded electromechanical fields into equations (36)–(39) yields the following four

equations,
U 0
x ¼ �/btb31

hd33
þ 6a11

h2
M þ ðb231 þ a11d33Þ

hd33
N � ð5b31b33 þ ð12a13 þ a55Þd33Þ

10d33
M 00

þ hðb31b33 þ 4a13d33 � a55d33Þ
12d33

N 00 þ h2ð35b233 þ 44a33d33Þ
840d33

M 0000 � h3ð5b233 þ 6a33d33Þ
360d33

N 0000

� b31h
2

D0
0 þ

b15h
6

D0
1 þ

b33h3

120
D000

0 � b33h3

360
D000

1 ð42Þ

U 00
z ¼ � 12a11

h3
M þ 6ð2a13 þ a55Þ

5h
M 00 þ ðb31b33 � a55d33Þ

2d33
N 00 � hð35b233 þ 52a33d33Þ

140d33
M 0000

þ h2ð5b233 þ 8a33d33Þ
60d33

N 0000 þ ðb15 þ b31ÞD0
0 �

b33h2

10
D000

0 ; ð43Þ

d11hD0 �
h3d33
12

D00
0 � ðb15 þ b31ÞM 0 þ b15h

2
N 0 þ b33h2

10
M 000 � b33h3

24
N 000 ¼ 0; ð44Þ

�120d11D1 þ 2h2d33D00
1 � 60b15N 0 þ h2b33N 000 ¼ 0: ð45Þ
From Eqs. (30), (31), (40) and (41) follows
Ux ¼ ðx� x0Þe1x þ 2ð1� mðsÞ
2Þ

pY ðsÞ

Z l

�l
N 0ðnÞ ln x0 � n

x� n

����
����dn; ð46Þ

Uz ¼
2ð1� mðsÞ

2Þ
pY ðsÞ

Z l

�l
M 00ðnÞ

�
� h
2
N 00ðnÞ

�
ln

x0 � n
x� n

����
����dn: ð47Þ
By eliminating Ux and Uz from Eqs. (42) and (43) and Eqs. (46) and (47), one obtain two integro-differential

equations as follows,
T11N 0000 þ T12M 0000 þ T13N 00 þ T14M 00 þ T15D0
1 þ T16D0

0 þ T17N þ T18M þ
Z l

�l

N 0ðnÞ
x� n

dn

¼ pY ðsÞ

2ð1� mðsÞ
2Þ

e1x

�
þ /btb31

hd33

�
; ð48Þ

T21N 0000 þ T22M 0000 þ T23N 00 þ T24M 00 þ T25D0
0 þ T26M þ

Z l

�l

hN 00ðnÞ � 2M 00ðnÞ
ðx� nÞ2

dn ¼ 0: ð49Þ
where coefficient constants Tkl are listed in Appendix C. Now, Eqs. (44) and (45) and (48) and (49) are the

governing integro-differential equations in terms of force, moment and electric displacements for the
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piezoelectric layer bonded to an elastic substrate. From the stationary conditions dPR ¼ 0 with explicit

expression of Eqs. (34) and (35), one obtains the mechanical boundary conditions
Nð�lÞ ¼ 0; Mð�lÞ ¼ 0; ð50a;bÞ

N 0ð�lÞ ¼ 0; M 0ð�lÞ ¼ 0; ð51a;bÞ
and the electric boundary conditions on the edges
D0ð�lÞ ¼ 0; D1ð�lÞ ¼ 0: ð52a;bÞ
The electric boundary condition on the top and bottom surfaces coated with electrodes can be obtained as,
/bt ¼ V ; ð53Þ
for a prescribed voltage, V , or
/bt ¼
b31
2l

Z l

�l
NðxÞdx� hd33

2l
�qq; ð54Þ
for a prescribed free charge on the surfaces, �qq.
6. Conclusions

We have considered electromechanical coupling problems that a piezoelectric layer bonded to elastic

substrate. Two differential equations and two singular integro-differential equations of four unknown

functions, the axial force, N , the moment, M , the average and the first moment of electric displacement, D0

and D1, as well as the associated boundary conditions have been derived rigorously from the stationary

conditions of Hellinger–Reissner variational functional. The 2-D electromechanical field quantities in

piezoelectric layer satisfies exactly the equilibrium equations and Gauss law, the constitutive equations, two

of the three displacement–strain relations as well as one of the two electric field-electric potential relations.

Remaining two equations are satisfied by the stationary conditions of the variational functional. Values of

all electromechanical quantities everywhere in the layer and the substrate can be computed from the four

variables. In contrast to the thin film/substrate theory that ignores the interfacial normal stress the present

one can predict both the interfacial shear and normal stresses, the latter one is believed to control the
delamination initiation.
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Appendix A. Hellinger–Reissner variational principle for piezoelectric bimaterials

Consider a bimaterial system which consists of two dissimilar piezoelectric materials of volumes, V ð1Þ and

V ð2Þ, perfectly bonded together. Let S denote the external boundary surface of the bimaterial, and Sð12Þ the
interface. The standard Einstein notation is used with summation convention applied to the repeated in-

dices. The boundary value problems of the bimaterial can be stated as follows:
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(1) The mechanical equilibrium equations without body force are given by
rji;j ¼ 0 in V ð1Þ þ V ð2Þ; ðA:1Þ
where rij is the Cauchy stress tensor.

(2) Gauss law in the absence of free electric charge inside the materials gives
Di;i ¼ 0 in V ð1Þ þ V ð2Þ; ðA:2Þ

where Di is the electric displacement vector.

(3) The strain–displacement relations are
eij ¼ 1
2
ðui;j þ uj;iÞ in V ð1Þ þ V ð2Þ; ðA:3Þ
where eij is the infinitesimal strain tensor, and ui the displacement vector.

(4) Under a quasi-static condition the electric field, Ei, and the electric potential, /, have the following

relationship:
Ei ¼ �/;i in V ð1Þ þ V ð2Þ: ðA:4Þ
(5) The constitutive equations for linear piezoelectricity are given by
eij ¼ sijklrkl þ gkijDk in V ð1Þ þ V ð2Þ; ðA:5aÞ

Ek ¼ �gijkrij þ bklDl in V ð1Þ þ V ð2Þ; ðA:5bÞ

where sijkl is the fourth-order tensor of elastic compliance measured at zero electric displacement, gijk the
third-order piezoelectric tensor and bik the second-rank dielectric impermeability tensor measured at zero

stress.

(6) From the viewpoint of the mechanical boundary conditions the external boundary, S, can be divided

into two parts, Sr and Su, on which tractions and displacements are prescribed by �TTi and �uui, respectively, i.e.
rijni ¼ �TTj on Sr; ðA:6aÞ

ui ¼ �uui on Su; ðA:6bÞ

where ni are the direction cosines of the outward unit vector normal to the boundary. From the viewpoint

of the electric boundary conditions the external boundary, S, can be divided into two parts, SD and S/, on
which free electric charge and electric potential are prescribed by �qq and �//, respectively, i.e.
Dini ¼ �qq on SD; ðA:7aÞ

/ ¼ �// on S/: ðA:7bÞ

(7) If the two materials are perfectly bonded the mechanical tractions and displacements have to be

continuous across the interface, i.e.
ðrð1Þ
ij � rð2Þ

ij Þn
ð1Þ
i ¼ 0 on Sð12Þ; ðA:8aÞ

uð1Þi ¼ uð2Þi ; on Sð12Þ; ðA:8bÞ

where nð1Þi are the direction cosines of the unit vector normal to the interface pointing from the material ‘‘1’’
to the material ‘‘2’’. In absence of the free charge on the interface there is no jump in the electric dis-

placement across the interface, i.e.
ðDð1Þ
i � Dð2Þ

i Þnð1Þi ¼ 0 on Sð12Þ: ðA:9aÞ
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The electric potential has to be continuous across the interface,
/ð1Þ ¼ /ð2Þ on Sð12Þ: ðA:9bÞ
The exact solution for a boundary value problem of the jointed two piezoelectric materials has to satisfy
all Eqs. (A.1)–(A.9b). Alternatively, the problem could be stated by a variational principle. By taking the

constitutive equations (A.5a) and (A.5b), the interface continuity conditions of the displacement and the

electric potential, Eqs. (A.8b) and (A.9b), as subsidiary conditions, Hellinger–Reissner variational principle

for elasticity (Washizu, 1982) can be extended to the jointed piezoelectric materials by introducing the

following functional including electro-mechanical coupling
PR ¼
X
k

Z
V ðkÞ

1
2
rijðui;j

�
þ uj;iÞ �Di/;i � Bðrij;DiÞ

�
dV �

Z
Sr

�TTiuidS�
Z
Su

ðui � �uuiÞnjrjidS

þ
Z
SD

�qq/dSþ
Z
S/

ð/� �//ÞniDidS�
Z
Sð12Þ

ðnð1Þj rð1Þ
ji þ nð2Þj rð2Þ

ji Þu
ð1Þ
i dS þ

Z
Sð12Þ

ðnð1Þj Dð1Þ
j þ nð2Þj Dð2Þ

j Þ/ð1ÞdS;

ðA:10Þ
where
B ¼ 1
2
rijsijklrkl

�
þ DibijDj � rijgijkDk þ Dkgkijrij

�
; ðA:11Þ
is complementary energy density. The independent quantities subject to variation in the functional (A.10)

are stress, rij, displacements, ui, electric displacements, Di, and electric potential, /. By taking variation of

the functional (A.10) with respect to those quantities one obtains
dPR ¼
X
k

Z
V ðkÞ

1

2
ðui;j

��
þ uj;iÞ �

oB
orij

�
drji �

oB
oDi

�
þ /;i

�
dDi � rij;iduj þ Di;id/

�
dV

þ
Z
Sr

ðnjrji � �TTiÞdui dS �
Z
Su

ðui � �uuiÞnjdrji dS �
Z
SD

ðniDi � �qqÞd/dS þ
Z
S/

ð/� �//ÞnidDi dS

�
Z
Sð12Þ

nð1Þj ðrð1Þ
ji � rð2Þ

ji Þdu
ð1Þ
i dS þ

Z
Sð12Þ

nð1Þj ðDð1Þ
j � Dð2Þ

j Þd/ð1ÞdS ðA:12Þ
and the stationary condition dPR ¼ 0 lead to Eqs. (A.1), (A.2), (A.6a)–(A.8a), (A.9a) as well as
1
2
ðui;j þ uj;iÞ ¼ sijklrkl þ gkijDk in V ð1Þ þ V ð2Þ; ðA:13aÞ
�/;k ¼ �gijkrij þ bklDl in V ð1Þ þ V ð2Þ: ðA:13bÞ
Eqs. (A.13a) and (A.13b) are equivalent to the strain–displacement relations given by Eq. (A.3) as well as

the electric field-electric potential relations given by Eq. (A.4) if one takes the constitutive equations (A.5a)

and (A.5b) as subsidiary conditions.

Therefore, the boundary value problems governed by Eqs. (A.1)–(A.9b) can be stated by the stationary

conditions of the functional (A.10) along with the constitutive equations (A.5a) and (A.5b) as well as the
interface continuity conditions of the displacement and the electric potential, Eqs. (A.8b) and (A.9b), as

subsidiary conditions.
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Appendix B. Integrals in the variational functional
Z h=2

�h=2
rxð�l; zÞduxð�l; zÞdz ¼ NdUx

�
þ b15

2
ð2M � hNÞdD0 �

hb15
6

NdD1 �
1

2
ð2M � hNÞdU 0

z

þ 3ðb31b33 þ d33a13 � d33a55ÞM � hðb31b33 þ d33a13 � 2d33a55ÞN
6d33

dN 0

þ ða13 þ a55Þð12M � 5hNÞ
10h

dM 0 � b33h2

120
ð12M � 5hNÞdD00

0 þ
b33h3

360
NdD00

1

þ 3h2ð5b233 þ 8d33a33ÞM � h3ð5b233 þ 9d33a33ÞN
6d33

dN 000

þ �3hð35b233 þ 52d33a33ÞM þ 7h2ð5b233 þ 8d33a33ÞN
420d33

dM 000
�
x¼�l

;

Z h=2

�h=2
rxzð�l; zÞduzð�l; zÞdz ¼ b33ð3M 0 � hN 0Þd/bt

6d33

�
þ 1

2
ð2M 0 � hN 0ÞdUz

� ðb31b33 þ d33a13Þð3M 0 � hN 0Þ
6d33

dN þ a13ð�12M þ 5hNÞ
10h

dM

þ h2b33
120

ð12M 0 � 5hN 0ÞdD0
0 �

h3b33
360

N 0dD0
1

þ�3h2ð5b233 þ 8d33a33ÞM þ h3ð5b233 þ 9d33a33ÞN
180d33

dN 00

� �3hð35b233 þ 52d33a33ÞM 0 þ 7h2ð5b233 þ 8d33a33ÞN 0

420d33
dM 00

�
x¼�l

;

Z h=2

�h=2
Dxð�l; zÞd/ð�l; zÞdz ¼

�
� 1

6
D1hd/bt þ

1

2
hD0ðd/b þ d/tÞ � b31D0dM � h3d33

12
D0dD0

0

� h3d33
180

D1dD0
1 �

h3b33ð15D0 þ D1Þ
360

dN 00 þ b33h2D0

10
dM 00

�
x¼�l

;

ð/bt � V Þ
Z l

�l
dDz x;

h
2

� �
dx ¼ 2l

hd33
ð/bt � V Þd/bt þ ð/bt � V Þ b33

hd33

Z l

�l
dNðxÞdx

þ ð/bt � V Þ
��
� h
2
dD0 �

h
6
dD1 þ

hb33
6d33

dN 0 � hb33
2d33

dM 0
�
x¼l

�
�
� h
2
dD0 �

h
6
dD1 þ

hb33
6d33

dN 0 � hb33
2d33

dM 0
�
x¼�l

�
;

d/bt

Z l

�l
Dz x;

h
2

� �
dx¼ 2l

hd33
d/bt/btþ d/bt

b33
hd33

Z l

�l
NðxÞdxþ d/bt

��
� h
2
D0�

h
6
D1 þ

hb33
6d33

N 0 � hb33
2d33

M 0
�
x¼l

�
�
� h
2
D0�

h
6
D1 þ

hb33
6d33

N 0 � hb33
2d33

M 0
�
x¼�l

�
:
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Appendix C. Coefficient constants in the governing equations
T11 ¼ � pY ðsÞ

2ð1� mðsÞ
2Þ

h3a33
60

�
þ h3b233
60d33

�
;

T12 ¼
pY ðsÞ

2ð1� mðsÞ
2Þ

11h2a33
210

�
þ 217h2b233

4200d33

�
;

T13 ¼
pY ðsÞ

2ð1� mðsÞ
2Þ

hð20a13 � 5a55Þ
60

�
þ hb33ð�2b15 þ 5b31Þ

60d33

�
;

T14 ¼ � pY ðsÞ

2ð1� mðsÞ
2Þ

ð12a13 þ a55Þ
10

�
þ ðb15 þ 6b31Þb33

10d33

�
;

T15 ¼
pY ðsÞ

2ð1� mðsÞ
2Þ

ð�b33d11 þ b15d33Þh
6d33

;

T16 ¼
pY ðsÞ

2ð1� mðsÞ
2Þ

ðb33d11 � 5b31d33Þh
10d33

;

T17 ¼
pY ðsÞ

2ð1� mðsÞ
2Þ

a11
h

�
þ b231
hd33

�
;

T18 ¼
3a11
h2

pY ðsÞ

ð1� mðsÞ
2Þ
;

T21 ¼
pY ðsÞ

ð1� mðsÞ
2Þ

2h2ðb233 þ a33d33Þ
15d33

;

T22 ¼ � pY ðsÞ

ð1� mðsÞ
2Þ

13ha33
35

�
þ 259hb233

700d33

�
;

T23 ¼ � pY ðsÞ

ð1� mðsÞ
2Þ

a55
2

�
þ ð6b15 � 5b31Þb33

10d33

�
;

T24 ¼
pY ðsÞ

ð1� mðsÞ
2Þ

6ð2a13 þ a55Þ
5h

�
þ 6ðb15 þ b31Þb33

5hd33

�
;

T25 ¼
pY ðsÞ

ð1� mðsÞ
2Þ

b15

�
þ b31 �

6b33d11
5d33

�
;

T26 ¼ � 12a11
h3

pY ðsÞ

ð1� mðsÞ
2Þ
:
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