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Abstract

This two-part contribution presents a novel and efficient method to analyze the two-dimensional (2-D) electrome-
chanical fields of a piezoelectric layer bonded to an elastic substrate, which takes into account the fully coupled
electromechanical behavior. In Part I, Hellinger—Reissner variational principle for elasticity is extended to electrome-
chanical problems of the bimaterial, and is utilized to obtain the governing equations for the problems concerned. The
2-D electromechanical field quantities in the piezoelectric layer are expanded in the thickness-coordinate with seven
one-dimensional (1-D) unknown functions. Such an expansion satisfies exactly the mechanical equilibrium equations,
Gauss law, the constitutive equations, two of the three displacement-strain relations as well as one of the two electric
field-electric potential relations. For the substrate the fundamental solutions of a half-plane subjected to a vertical or
horizontal concentrated force on the surface are used. Two differential equations and two singular integro-differential
equations of four unknown functions, the axial force, N, the moment, M, the average and the first moment of electric
displacement, D, and D, as well as the associated boundary conditions have been derived rigorously from the sta-
tionary conditions of Hellinger—Reissner variational functional. In contrast to the thin film/substrate theory that
ignores the interfacial normal stress the present one can predict both the interfacial shear and normal stresses, the latter
one is believed to control the delamination initiation.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A thin piezoelectric layer adhered on the surface of a host material or embedded in it as an actuator and/
or a sensor plays an important role in the application of piezoelectric materials to smart technologies
(Wang and Chen, 2000; Pal et al., 2000; Gong and Suo, 1996; Chandrasekaran et al., 2000; Kim and Jones,
1996). Two fundamental issues concerned in such an integration technology are: (1) the capability of
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converting the electric energy into the mechanical energy, and vice versa; (2) the integrity and durability of
bonded smart devices or components.

The first issue is related directly to the global interaction between the piezoelectric layer and the host
material. Crawley and de Luis (1987) first proposed a model to describe a deformation transfer from a
piezoelectric actuator to a beam-like host material through the adhesive layer. The axial stress in the
piezoceramic actuator was simply assumed to be uniform across its thickness, the adhesive layer was as-
sumed to have a one-dimensional shear strain condition and the axial strain of the host material was as-
sumed to be linear in the thickness direction. In order to avoid bending, the structure has two symmetrical
piezoelectric actuators adhered on the top and bottom sides of the host material. Park et al. (1993) modified
the model of Crawley and de Luis (1987) to the structure with a piezoelectric actuator adhered on only one
side, the strain transfer rule was analyzed in the bending—extension mode and the bending—extension—
distortion mode. Crawley and Anderson (1990) studied the strain transfer model of the same structure
based on Euler—Bernoulli beam theory. In the paper the transverse strains of the host and of the piezo-
electric actuator were both assumed to be a linear function of the thickness coordinate. Robbins and Reddy
(1991) analyzed the strain transfer behavior of the structure by using the finite element method. Molyet
(1999) proposed a two-dimensional (2-D) model based on the finite difference method in analyzing the
beam bonded by piezoceramic pieces on both sides. Peelamedu et al. (1999) investigated the strain transfer
between the actuator and the host material experimentally and numerically. The three-dimensional (3-D)
finite element results were compared with the 2-D finite difference model (Molyet, 1999), the 1-D model
(Park et al., 1993) and the experiments. Zhang et al. (2000, 2001a) proposed several models to deal with the
conditions of plane strain, plane stress and bending in the strain transfer analysis of the beam-like structure
with a piezoceramic layer adhered on one side. However, the mentioned analyses ignore the coupling
between electrical fields and mechanical fields. There are a few papers concerning the coupled electrome-
chanical analysis of piezoelectric actuator and piezoelectric sensor (Anderson and Hagood, 1994; Mitchell
and Reddy, 1995; Chattopadhyay et al., 1999; Zhou et al., 2000). Zhou et al. (2000) investigated the dif-
ference between the coupled model (the two-way coupled model in the paper) and the uncoupled model (the
one-way coupled model in the paper). The numerical results have shown a significant difference between the
two models in some cases. Thus, a coupled piezoelectric-mechanical model would be preferred in order to
deal with all the cases.

The second issue, namely the integrity and durability, is related directly to local stress fields at the sites
where the mechanical and electric concentration presents. The fully coupled electromechanical analyses are
needed. The earliest equations describing the mutual interactions of the piezoelectric and mechanical fields
in piezoelectric materials were given by Tiersten (1969). Sosa and Pak (1990), Sosa (1992a,b) introduced the
equations into the fracture analysis of piezoelectric materials and the electroelastic behavior of piezoelectric
laminated structures. Most investigations to date have focused on the fracture within a single piezoelectric
material (Yang and Suo, 1994; Hao et al., 1996; Zhang and Tong, 1996; Zhang et al., 1998, 2001b). Some
works have been done on an interface crack between two piezoelectric materials (Suo et al., 1992; Shen
et al., 1999; Herrmann et al., 2001) and between a piezoelectric material and an elastic material (Liu and
Hsia, 2003; Wang and Meguid, 2000). Recently the two dimensional electromechanical singularities of
piezoelectric wedges were discussed by Xu and Rajapakse (2000) and Chue and Chen (2002). The asym-
ptotic solutions of them indicated that the stresses, electric displacements and electric fields near the apex
of a wedge are proportional to »~*, where r is the distance measured from the apex of the wedge. The
singularity order, s, could be a complex number, leading to a physically unrealistic oscillating electroelastic
field near the wedge. Most of the mentioned analyses considered an infinite body, which is somewhat not
relevant geometrically to the bonded smart structures where the piezoelectric layer is of finite size and
relatively thin compared with the substrate. This leaves space for one to develop an approach alternative to
the mathematical wedge model, which can take into account the geometric features of the piezoelectric
layer, such as the finite length and the thin thickness. In fact, Wang and Meguid (2000) investigated the
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behavior of a thin piezoelectric actuator attached to an infinite host structure. The uniform electrical field
was assumed in piezoelectric layer. And a thin film/substrate theory was utilized, which ignores the in-
terfacial normal stress.

When a piezoelectric layer is bonded on the surfaces of a substrate, both length and thickness of the layer
are often much smaller than the size of the substrate, the host material could be treated as a half-infinite
plane. In this two-part contribution, we will propose an electromechanical coupling method to analyze such
problems. In this part, we devote our attention to developing the governing equations for the problems. By
taking into account the geometry of the problems, the singular integro-differential equations will be derived
from an extended Hellinger—Reissner variational principle.

2. Coupling problems of a piezoelectric layer bonded to an elastic substrate

Consider a piezoelectric layer of thickness, 4, with the poling direction in z-axis bonded to an elastic
substrate that is modeled as a half-infinite plane, Fig. 1. The Cartesian coordinate system x—y—z is used with
the origin positioned at the center of the piezoelectric layer. The plane strain condition of the xz-plane is
assumed. Let ¥ and V' represent the volumes of the piezoelectric material and the substrate. The
boundary value problems of the bimaterial can be stated as follows:

(1) The mechanical equilibrium equations without body force are given by

aa(; agz’“ =0, inV+V0, (1a)
ds. o, ,
aUZz g;c =0, inV+ V(S), (1b)

where o,, 0., o,, are Cauchy stress components.
(2) Gauss law in the absence of free electric charges inside the piezoelectric material gives
oD, n oD,
ox Oz
where D, and D, are the electric displacement components.
(3) The strain—displacement relations are

—0, inV+V0, (2)

_ Ou,

b= 5 inV+v®, (3a)
6 = aa‘; in v+ v, (3b)

Piezoelectric layer

Elastic substrate

M
Y

Fig. 1. A piezoelectric layer bonded to a substrate.
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du,  du
26 = o

2 T in Vv, (3c)

where ¢,, ¢, and ¢,, are the infinitesimal strain components, u, and u, the displacement components.
(4) Under a quasi-static condition the electric field, £, and E. as well as the electric potential, ¢, have the
following relationship:

o . .
E,=——, Vv, 4
i m v+ (4a)
o .
E. =—-—" V4, 4b
5,0 mV+ (4b)
(5) The constitutive equations for the linear piezoelectric layer are given by
& = ano, + apo; + by Dy, (5a)
& = a130x + ax0; + by D:, (5b)
28xz = 550, + blSDx7 (SC)
Ex = _bISO-xz + 511DX7 (63)
E. = —b3 10, — b330, + 933D, (6b)

where ay;, a3, as; and ass are the 2-D compliance components reduced from the 3-D compliance tensor
Syus bis, b3 and bss reduced from the third-order piezoelectric tensor gi; 011 and ds3 reduced from the
second-rank dielectric impermeability tensor f8;;. And the elastic stress-strain relationship of the substrate
gives

) =)ol +afol, (7a)
e = aJol +af)al, (7b)
268 = aJel), (7c)

where quantities with the superscript ‘s’ belong to the substrate and those without superscript belong to the
piezoelectric layer.

(6) If the two materials are perfectly bonded the displacements and mechanical tractions have to be
continuous across the interface, i.e.

h h
u® <x,2> =u, (x,2> = U,(x) for |x| </, (8a)
h h
W (x,2 ) =u(x5 ) =Ulx) for|x|<1, (8b)
: 2 2
h h
— ) =9 x.= <
0, (x72> o) (x,z) for |x| < 1, (9a)
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(7) The piezoelectric layer is free of the mechanical loading on the external surfaces, leading to the
mechanical boundary conditions in terms of stress components as follows:

h
az<x,—§> =0, (10a)
h
Oy <x, - 2) =0, (10b)
o.(xl,z) =0, (10c)
0.(£l,z) =0. (10d)
And the free surface of the substrate gives
h
o (x,z = 2) =0, for|x|>1, (11a)
h
a® (x,z = 5) =0, for|x|>1. (11b)

The elastic substrate is mechanically loaded in tension or compression via the remote axial strain, &°, i.e.

Gf(S)(:l:OOaZ) = ngcv (110)
aj

a(f00,2) = 0. (11d)

(8) From the viewpoint of the electric boundary conditions the boundary of the piezoelectric layer can be
divided into two parts, on which either the free electric charge or the electric potential is prescribed. Both
the edges of the piezoelectric layer is open to air which has a dielectric constant approximately three times
orders of magnitude smaller than the dielectric constants of the piezoelectric material (Sosa, 1992a). Such
an assumption leads to the electrical boundary conditions given by

D, (£l,z) = 0. (12)

The top and bottom surfaces of the piezoelectric layer are fully covered with the electrodes of a zero
thickness, and the potential on the electrodes does not vary with position, i.e.

¢(x7—§) = ¢y, (13a)

¢><x,g> = ¢y, (13b)

where the constant, ¢, = ¢, — ¢,, is the electric potential difference between the bottom and top electrodes.
The uniform electric potentials are still unspecified, suggesting that a further boundary condition needs to
be given. This can be done by one of two exclusive ways, namely by directly prescribing the voltage, V, or
by giving total free charges on the surfaces, g. The former one gives

b=V (14)
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And the latter one leads to the following mathematical expression

/iDz(x,—g)dxz/jDz<x,g)dx:q. (15)

Eq. (14) is exclusive from Eq. (15), and vice versa. In practice if the piezoelectric layer is used as an actuator
the electric potential difference, ¢, is prescribed by applying a voltage, V', to the electrodes, namely
Eq. (14). If the piezoelectric layer is taken as a sensor that measures the mechanical strain of the substrate
an open circuit may be used without external free charges, i.e., g = 0. In this case Eq. (15) should be satisfied
along with ¢ = 0, and the potential difference, ¢,,, can be computed by solving the boundary value problem
governed by Egs. (1)-(13b) as well as (15), which is an indicator of the mechanical strain of the substrate.

The boundary value problem governed by the equations mentioned can be stated, alternatively, by the
electromechanical variational principle given in Appendix A, which is an extension of Hellinger—Reissner
variational principle for elasticity (Washizu, 1982). In the succeeding sections we will utilize the variational
principle to reduce the 2-D electromechanical problem into an 1-D problem.

3. Expansion of fields in the piezoelectric layer

Assuming the x-axis normal stress has a linear variation across the thickness, it follows that

N 12z
O =5 + ?M ) (16)
where N and M are the axial force and the bending moment acting on the cross-section and given by,
hy2
N = [ alnds (17a)
—h/2
h/2
M(x) = / zoy(x,z)dz. (17b)
Y

By combining Egs. (1a), (1b) and (16) as well as by considering the stress-free surface conditions, Eqgs. (10a)
and (10b), one could obtain
3k —42)M' (h+22)N'

Oxz = 2]’13 - 2% ) (183)

(z — h)(h+ 2z)*M" N (h+ 2z)*N"
2h3 8h ’
where superscript ' stands for the derivative with respect to x.
Assumption that the electric displacement component, D,, is a linear function of z-coordinate leads to

(18b)

g, =

2
Di(x.2) = Do(x) + 5 Di(v), (19)
where Dy and D, given by
1 h/2
Dy(x) =~ D, (x,z)dz, (20a)
h ) wp
6 h/2
i) =35 [ i)z (200)
h* J
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are the through-thickness average and the first moment of the electric displacement in x-direction, res-
pectively. By substituting Eq. (19) into Gauss law, Eq. (2), it follows

2

_%Dg (x) + Da(x). (21)

Substitution of the stresses, Egs. (16) and (18b), as well as the electric displacements, Eq. (21), into Eq. (6b),
along with combination of Egs. (4b) and (13a,13b), gives

D.(x,z) = —zDj)(x)

+ W —4z%)6 z(h? — 422)6 3by (W — 422
¢:¢b2¢t+(¢b_¢t)z_( { ) 33DE)_ ( 124 ) 33)D/l_ 31(2]’!3 )M
(1? — 422)(3h + 22)bss (1% — 422)(5h? — 42)by
B 48h N+ 3203 M, (22)
qﬁb o, hD’ b3 hbysN”  bysM”
Dy = — 23 - . 2
T Then 12 Thow T 6om 20m @)
Substitution of Eq. (23) into Eq. (21) leads to
Py h 2\, by hbysN"  bysM”
- - . 24
Dx,2) = =5 = =t (= 5 )P T iaa N oo 20m (24)

By substituting the stresses, Eqgs. (16) and (18b), as well as the electric displacements, Eq. (21), into Eq. (5b),
then using Eq. (3b) one could derive an expression for the z-axis displacement as follows:

2 2 2 2
u, = Uﬁ-%(qﬁb _ d)t) + (h ;‘Z )b33D6 +Z(h 124; )ba3D/1
_ (b3ibys + a13033)(h — ZZ)N B 3a3(h? — 422)M
2hds33 2h3
B (h—2z) (4b§3h2 + a33033(7h? + 8hz + 422)) N
48h03;3
n (h — 2z)(8b3;h° + 03353:;;23;1;4- 10n%z — 4hz* — 82%)) I (25)

where U, (x) is the z-axis displacement of the bottom surface of the piezoelectric layer. Similarly, an ap-
propriate combination of the stress, Eq. (18a), the electric displacement, Eq. (19), as well as Egs. (5¢), (3¢)
and (25), leads to

h bys(h — 2 ho 2 h—22)*(h+2)b
1@:C&+(——z)@—uﬂL——jb%—bw(z—i)Dy+( 2 (b 2)bw

2 2 h 24
(l’l2 — 422)2b33 D,, _ (b31b33(h — 22) + (a13 — 3&55)533}1 — 2(6113 =+ 6155)5332)(/1 — 22) N,
192h ! 8hds;
(a3 +ass)(h = 22)*(h + 2) o 22)7 (8b2, 1% + as3053(17H + 12hz + 42%)) v
213 3844053
+@—kﬂm%M+@ﬁMBM+M%—M£—M»MW 26)
1604363

where U, (x) is the interface displacement in x-direction. In conclusion, the 2-D fields of stresses, dis-
placements, electric displacements and electric potentials in the piezoelectric layer have been expressed in
terms of seven unknown quantities, N, M, U,, U., Dy, D, and ¢,,. The last one is a constant while the others
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are functions of x-coordinate only. Such an expansion of the mechanical and electric fields satisfies the
mechanical equilibrium equations (1a) and (1b), Gauss law, Eq. (2), the displacement—strain relations,
Eqgs. (3b) and (3c¢), the potential-electric field relation, Eq. (4b), as well as the constitutive equations. The
remaining two field equations (3a) and (4a) will be replaced by the stationary conditions of Hellinger—
Reissner variational functional given in Appendix A, along with substitution of the expanded fields.

4. Mechanical fields of the substrate

In order to express the mechanical fields of the substrate in terms of the interface displacements, U, and
U., the exact solutions of the half-plane subjected to a concentrated force on the surface are utilized. A
horizontal concentrated force of unit magnitude at the point, &, on the surface will produce a relative x-axis
displacement of point, x, with respect to point xy, on the surface, given by

2(1 =)

Gy(x, &) = v

xo— ¢
x—=¢
and the vanishing relative vertical displacement. Y® and v¥ are Young’s modulus and Poisson’s ratio of the
substrate, respectively. When the surface of the half plane is subjected to a vertical concentrated force of

unit magnitude at the point, &, the relative vertical displacement of point, x, with respect to point x,, on the
surface could be expressed as:

2(1 — v
Yy

; (27)

n xo— &
x—¢
and the relative x-axis displacement is zero. Equations (227) and (28) valid for the plane strain problem can
apply to the plane stress case by replacing Y /(1 —v®") with Y,
Assume that the surface tractions over the portion (—/,/) are denoted by p.(x) and p.(x), it follows:

m_wgog> (29a)

Gz(x7 é) =

: (28)

P = _GES) <xa z) . (29b)

To produce the interface displacements, U, and U, which are the relative displacements of point, x, with
respect to the point xy, the tractions on the surface of the half-plane, p.(x) and p,(x), as well as the remote
strain have to satisfy, i.e.

2(1 — vy 1 —¢
= =i+ 228 [ pom e (30)
21—y ! m =<y 3
Uz_Wllpz(é) n — g ( )

5. Governing equations

Now all electric quantities in the piezoelectric layer and the mechanical fields in both the piezoelectric
material and the substrate have been expressed in terms of the 1-D unknown functions, N, M, U,, U., D, D,
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and ¢,,. The governing equations for them could be obtained by substituting the expanded electrome-
chanical fields into the extended Hellinger—Reissner functional, 1z, given in Appendix A, and by making
use of the stationary conditions. Since the solutions for stresses and displacements in the half-plane pro-
duced by interface displacements, U, and U,, are exact the variation of the extended Hellinger—Reissner
functional associated with the substrate is absolutely zero. Therefore, the extended Hellinger—Reissner
functional, Eq. (A.12), along with the substitution of the electromechanical fields given by Egs. (16),(18a),
(18b), (19), (24)—(26), (29a)—(31) leads to

o0llz = oIy + 8llsy + O, (32)

in which three terms are associated with the contributions, respectively, of volume, mechanical boundaries
and electric boundaries of the piezoelectric material, i.c.

1 12
5HV:/ (%—(a“ax—i-algaz—&-anz))(—5N+—25M>dV
V

Ox A &
0¢ 1 12z
_/V <(_b150-xz+5]]Dx)+a>(Z(SDO_F?éD])dV’ (33)

Mgy = — /_j (az <xg> +pz(x)>5ljzdx - /_Z (0 <x§> +Px(X))5dex

h/2

h/2 /2
+/ O'x(l,z)éux(l,z)dz—l-/ axz(l,z)éuz(l,z)dz—/ o.(—1,z)ou,(—1,z)dz

h/2 —h/2 —h/2

_ / Y (1.2 dz. (34)

/2

/ h/2 h/2
Ollsg = (¢pp — V) /léDz(x,g>dx—/ Dx(l,z)5¢(l,z)dz+/ D, (-1,z)0¢(—1,z)dz (35a)

h/2 —h/2

or

s = (/jpz <x§) dxq)éqﬁbt - /:li(l,z)écj)(l,z) dz+/zsz(l,z)5d)(l,z)dz. (35b)

Eqgs. (35a) and (35Db) are exclusive, representing the boundary conditions, respectively, given by prescribing
the electric potential and the total free charge on both the top and bottom surfaces. The independent
quantities subject to variation in the functional (32)—(35) are seven quantities, N, M, U,, U,, Dy, D; and ¢,,.
The explicit expressions for the first variation of the functional, Egs. (33)-(35b), are given in Appendix B.
The stationary condition o011 = 0 along with Egs. (32)-(34) gives

h/2 aur
/ < ax“ — (a0, + anzo. + b31Dz)>dz =0 (36)
—h/2
h/2 aux
/ ) < o (anox + aizo. + b31Dz)>ZdZ =0, (37)
—h/2
h/2 6¢
/ ((_b150x2+511Dx) +_>dZ:05 (38)
—h/2 Ox
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h/2 a¢
/ (—b150'x2+511Dx) +— dZZO (39)
—h/2 Ox
Px = va (40)
11 h 1"

Substitution of the expanded electromechanical fields into equations (36)—(39) yields the following four
equations,

Onb3  bay (b3, + a11633) (5b31b33 + (12415 + ass)033)
I 240 s _ M
I Y 1055,
L h(b3ibs; + 43163533 - a55533)N” i h2(35b§§43544a33533)M,,,, _ h3(5b§§6g(36033533)]vuu
33 13 33
buh ,  bish . buh’ ,  buh’
T Pt Pt g P a0 P 42
UZ/, __ 12]/[6;11 M + 6(2611352- 6155)M” + (bz]bzgzg 6155633)N” _ h(35b§3i4-5552a33533)M”,,
33 33
h2(5b§3 + 8a33533) 1 / b33h2 111
606, N"" + (bys + b31)Dy — 10 Dy, (43)
35 2 3
d11hDy — h1233 Dy — (bis + bs)M' + #N’ + —bf(l; M" — —b;f N" =0, (44)
—1206,1D; + 2h*833D" — 60b sN' + h*by3N™ = 0. 45
1
From Egs. (30), (31), (40) and (41) follows
© 2(1 — v’ ! , xXo— &
Uy = (x — x0)e + % /_[N (Om| 2= 'dé, (46)
2(1 B V(S)Z) ! " h 1" X0 — é
0. =202 [ (=S m 2= e (@7)

By eliminating U, and U, from Egs. (42) and (43) and Eqs. (46) and (47), one obtain two integro-differential
equations as follows,

1 !
N
Ty N" + ToM"™ + TisN” + TiuM” + T1sDy + Ti6Dy + TN + TisM + / T (i) d¢
—1 -

ny® b3
— M (e : 48
m—w6@+h%>’ (48)

i " "
hN 2M
]21NW/ + ;zzMWl + 223N” + ;24MH + ;ZSDE) + 22(,M + / (f) (é) dé =0. (49)

S GO

where coefficient constants 7}, are listed in Appendix C. Now, Egs. (44) and (45) and (48) and (49) are the
governing integro-differential equations in terms of force, moment and electric displacements for the
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piezoelectric layer bonded to an elastic substrate. From the stationary conditions 611 = 0 with explicit
expression of Egs. (34) and (35), one obtains the mechanical boundary conditions

N(£l)=0, M(£l)=0, (50a,b)

N' () =0, M'(+])=0, (51a,b)
and the electric boundary conditions on the edges

Dy(£l) =0, Di(x/)=0. (52a,b)

The electric boundary condition on the top and bottom surfaces coated with electrodes can be obtained as,

o=V, (53)
for a prescribed voltage, V', or
b%l h533 —
N(x)dx — 54
/ 2 (54)

for a prescribed free charge on the surfaces, g.

6. Conclusions

We have considered electromechanical coupling problems that a piezoelectric layer bonded to elastic
substrate. Two differential equations and two singular integro-differential equations of four unknown
functions, the axial force, N, the moment, M, the average and the first moment of electric displacement, D,
and D, as well as the associated boundary conditions have been derived rigorously from the stationary
conditions of Hellinger—Reissner variational functional. The 2-D electromechanical field quantities in
piezoelectric layer satisfies exactly the equilibrium equations and Gauss law, the constitutive equations, two
of the three displacement-strain relations as well as one of the two electric field-electric potential relations.
Remaining two equations are satisfied by the stationary conditions of the variational functional. Values of
all electromechanical quantities everywhere in the layer and the substrate can be computed from the four
variables. In contrast to the thin film/substrate theory that ignores the interfacial normal stress the present
one can predict both the interfacial shear and normal stresses, the latter one is believed to control the
delamination initiation.
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Appendix A. Hellinger—Reissner variational principle for piezoelectric bimaterials

Consider a bimaterial system which consists of two dissimilar piezoelectric materials of volumes, ¥V and

()| perfectly bonded together. Let S denote the external boundary surface of the bimaterial, and S('? the

interface. The standard Einstein notation is used with summation convention applied to the repeated in-
dices. The boundary value problems of the bimaterial can be stated as follows:
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(1) The mechanical equilibrium equations without body force are given by
gi;=0 inpW 4y, (A1)
where ¢;; is the Cauchy stress tensor.
(2) Gauss law in the absence of free electric charge inside the materials gives
D=0 inpyW4y® (A.2)

where D; is the electric displacement vector.
(3) The strain—displacement relations are

ey = 3wy +u) in VOV, (A.3)

where ¢; is the infinitesimal strain tensor, and u; the displacement vector.
(4) Under a quasi-static condition the electric field, £;, and the electric potential, ¢, have the following
relationship:

Ei=—¢, iny4y@, (A4)
(5) The constitutive equations for linear piezoelectricity are given by

Eij = SijkiOkl + gk,-jDk in V(1> + V(2>, (ASa)

Ei = —giuoy + Py in VO 4 p@) (A.5b)

where s, 1s the fourth-order tensor of elastic compliance measured at zero electric displacement, g;; the
third-order piezoelectric tensor and f;, the second-rank dielectric impermeability tensor measured at zero
stress.

(6) From the viewpoint of the mechanical boundary conditions the external boundary, S, can be divided
into two parts, S, and S,, on which tractions and displacements are prescribed by T; and #;, respectively, i.e.

o;n; = 7_} on SO—, (A6a)

u; =1u; on Su, (A6b)

where n; are the direction cosines of the outward unit vector normal to the boundary. From the viewpoint
of the electric boundary conditions the external boundary, S, can be divided into two parts, Sp and Sy, on
which free electric charge and electric potential are prescribed by g and ¢, respectively, i.e.

Din,‘ = q on SD, (A7a)
$=¢ onsS,. (A.7b)

(7) If the two materials are perfectly bonded the mechanical tractions and displacements have to be
continuous across the interface, i.e.

(o) — 62)nD = 0 on S, (A8a)
u’ = u?, on §12, (A.8b)
where nfl) are the direction cosines of the unit vector normal to the interface pointing from the material “1”

to the material “2”. In absence of the free charge on the interface there is no jump in the electric dis-
placement across the interface, i.e.

(D" =DV =0 on 1. (A.9a)

1 1
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The electric potential has to be continuous across the interface,

dV = ¢?@ on S0, (A.9D)

The exact solution for a boundary value problem of the jointed two piezoelectric materials has to satisfy
all Egs. (A.1)-(A.9b). Alternatively, the problem could be stated by a variational principle. By taking the
constitutive equations (A.5a) and (A.5b), the interface continuity conditions of the displacement and the
electric potential, Egs. (A.8b) and (A.9b), as subsidiary conditions, Hellinger—Reissner variational principle
for elasticity (Washizu, 1982) can be extended to the jointed piezoelectric materials by introducing the
following functional including electro-mechanical coupling

II; = ; /VW (%Jij(uu +uji) —Di; — B(GijaDi))dV _/ Tu;dS —/ (u; — u;)n;o;;dS

Se Su
+ / g¢ods + / (¢ — ¢)n:D;dS — / (e + 0ol yul ds + / (n"D\" + 1P DP) " ds,
Sp Sy s12) s(12) ‘

(A.10)
where
B =3(0ysymon + DifyD; — 08D + Digrijoy) (A.11)

is complementary energy density. The independent quantities subject to variation in the functional (A.10)
are stress, o;;, displacements, u;, electric displacements, D;, and electric potential, ¢. By taking variation of
the functional (A.10) with respect to those quantities one obtains

1 0B OB
ol = Xk: /V<k> [(5 (uij+uj) — g)é"ﬁ - <6_D, + ¢1> OD; — 0;,0u; + Df«,iéd’} dv

ij

A Su

Sp S(/)

M) _ _2ys, (D Wrmd) mOrsa(l)
_/sm) n; (0" — 0y )ou; dSJr/S(12> n;'(D;’ — D, )opds (A.12)

and the stationary condition dI1; = 0 lead to Egs. (A.1), (A.2), (A.6a)-(A.8a), (A.9a) as well as

Wiy +ui) = o + gD in VO 410, (A.13a)

—¢ = —guoy + PyuD; 1n v 4 y@, (A.13Db)

Egs. (A.13a) and (A.13b) are equivalent to the strain—displacement relations given by Eq. (A.3) as well as
the electric field-electric potential relations given by Eq. (A.4) if one takes the constitutive equations (A.5a)
and (A.5b) as subsidiary conditions.

Therefore, the boundary value problems governed by Egs. (A.1)-(A.9b) can be stated by the stationary
conditions of the functional (A.10) along with the constitutive equations (A.5a) and (A.5b) as well as the
interface continuity conditions of the displacement and the electric potential, Eqs. (A.8b) and (A.9b), as
subsidiary conditions.



6794

J. Zhang et al. | International Journal of Solids and Structures 40 (2003) 6781-6797

Appendix B. Integrals in the variational functional

o)
/ 0. (£1,2)0uy(+1,z)dz = |NSU, + % (2M — hN)dD, — hl;” NOD; — %(2M — hN)SU!
—h/2
" 3(ba1b33 + 033013 — O33ass)M — h(b31bs3 + 033a13 — 2033as5)N
((113 + a55)(12M — ShN) ’ b33h2 1 b33h3
oM — 12M — 5hN)éD
10 120 ( 1006 + 360
3h2(5b§3 + 85336133)M h3(5b§3 + 9(3336133) "
ON
6033
T 73]’!(351)%3 + 52533&33)M —+ 7h2(5b§3 + 8533&33)]\] 5M,,,
420013 x:i,’
h/2 b33(3M' — hN")S¢py,
/ 0 (xl,z)0u.(£l,z)dz = L (2M’ hN")OU,
—h/2 6533 2
_ (b31b33 =+ 533013)(3M’ — hN/) 5N + (l13(—12M + ShN) 5M
6033 104
h2b33 / / / h3b33 1STY
+ 120 (12M" — ShN")éDy, — 360 N'oD]|
—3h2(5b§3 —+ 8533&33)M + h3(5b§3 =+ 9(5336133)]\] "
+ ON'
180633
—3]’[(3517%3 + 52533&33)M’ + 7]’!2(517%3 + 85336133)]\]/ "
— 2 oM ,
420633 et
"2 1 1 "33, )
Dx(il,z)éq’)(il,z)dz = 6D1h5¢bt hDO(5¢b + 5¢t) — bg]Do&M — 2 D05D
—h/2
h353'; h3b33(15D0 +D1) b33h2D0
——=D6D — ON" oM”
180 1O 360 10 ]Xi,’
! h 21 b33
=) [ 90:(2 )ax = 2= V13t + (b= 1) [ oG
h hbs; hb33
4 ——=0D 5D — 0N — =M
+ (9u )([ 200 TP T s 265, L_,

h h hbyy ., hby
—[—EéDo—géD oo N - 25335ML l),

! h 21 b h h hb hb
5¢bl/ Dz(xi)dx 5¢b‘¢bt+5¢blhg3 /N dx+5q’>bt<[ ——-D + 033 033

— 6 6033 2033

h h hbys ,  hbs;
=D D N ———M .
{ 27 +6533 2033 L />

ON'
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Appendix C. Coefficient constants in the governing equations

EY(S) h3a33 h3b%3
Tll - - 2 + ’
2(1 — v(s)_) 60 60533

oY 2 <11h2a33+217h2b§3)’

2(1 — () ) 210 4200533
r n¥Y® h(20a13 — Sass) n hbs3(—2b1s + 5b31)
BT W) 60 60633 ’
T B ny® (12a13 + ass)  (bis + 6b31)bss
i 2(1 —v?) 10 10053
nY®)  (=by30y1 + bysdx)h
Tis = 3 )
2(1 — v(s) ) 6533
T Y (b33d11 — 5b31633)h
o 2(1 —v?) 10635 ’
TEY(S) an b2
P an by
17 2(1 — v(S)Z) < h + h533 ) ’
36111 TCY(S)
T
18 hz (1 — V(S)z) ’
o Y 2R3 (b3, + a3ds3)
A= (1 — v(s)z) 15533 ’
Y® 13h 259hb?
Iy =-— i 2 @y 2,
(1 —yer7)y\ 35 700033
Yy 6b15 — 5b31)b
Ty = — T i @Jr( 15 31) 33 7
(1 _ V(s) ) 2 10533
ny® 6(2a13 +ass)  6(bis + bs)bss
Ty = 3 + )
(1 — v Sh 5hoss
ny® 6b33011
Ths=— b by — —
25 (- V(g)z) ( 15 + D31 5553 )
12 Y®
Ty aipy T

Ro(1 _V<s>2)'
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